åå®å šãªæ©æ¢°åŠç¿ãã€ãã©ã€ã³ã®å©ç¹ãæ¢ããå ç¢ãªAIã¯ãŒã¯ãããŒã®ããã®å®è£ æŠç¥ãå©ç¹ããã¹ããã©ã¯ãã£ã¹ãç¶²çŸ ãéçåä»ããMLãããžã§ã¯ãã®ä¿¡é Œæ§ããšã©ãŒåæžãä¿å®æ§ãããã«åäžããããã
åå®å šãªæ©æ¢°åŠç¿ãã€ãã©ã€ã³: AIã¯ãŒã¯ãããŒã®åå®è£
æ¥éã«é²åãã人工ç¥èœïŒAIïŒã𿩿¢°åŠç¿ïŒMLïŒã®é åã«ãããŠãMLãã€ãã©ã€ã³ã®ä¿¡é Œæ§ãšä¿å®æ§ã¯æãéèŠã§ããMLãããžã§ã¯ããè€éããå¢ããèŠæš¡ãæ¡å€§ããã«ã€ããŠããšã©ãŒã®å¯èœæ§ã¯ææ°é¢æ°çã«å¢å ããŸããããã§åå®å šæ§ãéèŠã«ãªããŸããåå®å šãªMLãã€ãã©ã€ã³ã¯ãããŒã¿ãµã€ãšã³ã¹ã𿩿¢°åŠç¿ã®äžçã«éçåä»ãã®å³å¯ããšå©ç¹ãããããããšã§ããããã®èª²é¡ã«å¯ŸåŠããããšãç®æããŠããŸãã
åå®å šæ§ãšã¯äœãããããŠãªãMLãã€ãã©ã€ã³ã«ãšã£ãŠéèŠãªã®ãïŒ
åå®å šæ§ãšã¯ãåãšã©ãŒãé²ãããã°ã©ãã³ã°èšèªã®ç¹æ§ã§ããåãšã©ãŒã¯ãäžé©åãªåã®å€ã«å¯ŸããŠæäœãå®è¡ããããšãã«çºçããŸããããšãã°ãæååãæŽæ°ã«å ç®ããããšãããšãåå®å šãªèšèªã§ã¯åãšã©ãŒã«ãªããŸããéçåä»ãã¯åå®å šæ§ã®åœ¢æ ã§ãããã³ãŒããå®è¡ãããåã®ã³ã³ãã€ã«æã«åãã§ãã¯ãå®è¡ãããŸããããã¯ãå®è¡æã«åãã§ãã¯ãè¡ãããåçåä»ããšã¯å¯Ÿç §çã§ããPythonã®ãããªèšèªã¯æè»æ§ãããäžæ¹ã§ãåçã«åä»ããããŠãããç¹ã«è€éãªMLãã€ãã©ã€ã³ã§ã¯ãããã°ãé£ããå®è¡æåãšã©ãŒãçºçããããã§ãã
MLãã€ãã©ã€ã³ã®æèã«ãããŠãåå®å šæ§ã¯ããã€ãã®äž»èŠãªå©ç¹ãæäŸããŸãã
- æ©æã®ãšã©ãŒæ€åº: éçåä»ãã«ãããéçºããã»ã¹ã®åææ®µéã§ãåãšã©ãŒãæ¬çªç°å¢ã«å°éããåã«ææã§ããŸããããã«ãããäºæããªãã¯ã©ãã·ã¥ã誀ã£ãçµæãé²ããå€§å¹ ãªæéãšãªãªãœãŒã¹ãç¯çŽã§ããŸãã
- ã³ãŒãã®ä¿å®æ§ã®åäž: åã¢ãããŒã·ã§ã³ã«ãããã³ãŒãã®æå³ãç°ãªãã³ã³ããŒãã³ããã©ã®ããã«é£æºããããçè§£ãããããªããŸããããã«ãããã³ãŒãã®å¯èªæ§ãšä¿å®æ§ãåäžãããã€ãã©ã€ã³ã®ãªãã¡ã¯ã¿ãªã³ã°ãæ¡åŒµã容æã«ãªããŸãã
- ã³ãŒãã®ä¿¡é Œæ§ã®åŒ·å: åå¶çŽã匷å¶ããããšã§ãåå®å šæ§ã¯å®è¡æãšã©ãŒã®å¯èœæ§ãæžããããã€ãã©ã€ã³ãæåŸ éãã«åäœããããšãä¿èšŒããŸãã
- ããè¯ãã³ã©ãã¬ãŒã·ã§ã³: æç¢ºãªåå®çŸ©ã¯ãããŒã¿ãµã€ãšã³ãã£ã¹ããããŒã¿ãšã³ãžãã¢ããœãããŠã§ã¢ãšã³ãžãã¢éã®ã³ã©ãã¬ãŒã·ã§ã³ãä¿é²ããé¢ä¿ããããŒã¿åãšã€ã³ã¿ãŒãã§ãŒã¹ã«ã€ããŠå šå¡ãå ±éã®çè§£ãæãŠãããã«ããŸãã
MLãã€ãã©ã€ã³ã§åå®å šæ§ãå®è£ ããéã®èª²é¡
ãã®å©ç¹ã«ãããããããMLãã€ãã©ã€ã³ã§åå®å šæ§ãå®è£ ããããšã¯ãããŒã¿ã®åçãªæ§è³ªãšãé¢äžãã倿§ãªããŒã«ããã¬ãŒã ã¯ãŒã¯ã®ããã«å°é£ãªå ŽåããããŸããäž»ãªèª²é¡ãããã€ã瀺ããŸãã
- ããŒã¿ã®ç°ç𮿧: MLãã€ãã©ã€ã³ã¯ãæ§é åããŒã¿ãéæ§é åããã¹ããç»åãé³å£°ãªã©ãããŸããŸãªãœãŒã¹ããã®ç°çš®ããŒã¿ãæ±ãããšããããããŸãããããã®ç°ãªãããŒã¿åå šäœã§åã®äžè²«æ§ã確ä¿ããããšã¯è€éã§ãã
- æ¢åã®ã©ã€ãã©ãªããã¬ãŒã ã¯ãŒã¯ãšã®çµ±å: TensorFlowãPyTorchãscikit-learnãªã©ã®å€ãã®äººæ°ã®ããMLã©ã€ãã©ãªããã¬ãŒã ã¯ãŒã¯ã¯ãæ¬è³ªçã«åå®å šã§ã¯ãããŸããããããã®ããŒã«ãšåå®å šæ§ãçµ±åããã«ã¯ãæ éãªæ€èšãšãåã¹ã¿ããã©ãããŒã®äœ¿çšãå¿ èŠã«ãªãå ŽåããããŸãã
- ããã©ãŒãã³ã¹ã®ãªãŒããŒããã: éçåä»ãã¯ãç¹ã«èšç®éã®å€ãMLã¿ã¹ã¯ã«ãããŠãããã©ãŒãã³ã¹ã®ãªãŒããŒããããåŒãèµ·ããå¯èœæ§ããããŸãããã ãããã®ãªãŒããŒãããã¯ãä¿¡é Œæ§ãšä¿å®æ§ã®åäžãšããå©ç¹ã«æ¯ã¹ãã°ãç¡èŠã§ããçšåºŠã§ããããšãå€ãã§ãã
- åŠç¿æ²ç·: äž»ã«Pythonã®ãããªåçåä»ãèšèªã«æ £ããŠããããŒã¿ãµã€ãšã³ãã£ã¹ãã¯ãåå®å šæ§ã广çã«å®è£ ããããã«æ°ããæŠå¿µãããŒã«ãåŠã¶å¿ èŠããããããããŸããã
åå®å šãªMLãã€ãã©ã€ã³ãå®è£ ããããã®æŠç¥
åå®å šãªMLãã€ãã©ã€ã³ãå®è£ ããããã«ãããã€ãã®æŠç¥ãæ¡çšã§ããŸããæãäžè¬çãªã¢ãããŒããããã€ã瀺ããŸãã
1. Pythonã§åãã³ãã䜿çšããéçåä»ã
Pythonã¯åçã«åä»ããããŠããŸãããMyPyãªã©ã®ããŒã«ã䜿çšããŠéçåãã§ãã¯ãå¯èœã«ããåãã³ãïŒPEP 484ïŒãå°å ¥ããŠããŸããåãã³ãã䜿çšãããšã倿°ã颿°åŒæ°ãããã³æ»ãå€ã«æåŸ ãããåãã¢ãããŒã·ã§ã³ã§ããŸããPythonã¯å®è¡æã«ãããã®åã匷å¶ããŸãããïŒ`beartype`ãªã©ã®ã©ã€ãã©ãªã䜿çšããªãéãïŒãMyPyã¯ã³ãŒããéçã«åæããåãšã©ãŒãå ±åããŸãã
äŸ:
from typing import List, Tuple
def calculate_mean(data: List[float]) -> float:
"""Calculates the mean of a list of floats."""
if not data:
return 0.0
return sum(data) / len(data)
def preprocess_data(input_data: List[Tuple[str, int]]) -> List[Tuple[str, float]]:
"""Preprocesses input data by converting integers to floats."""
processed_data: List[Tuple[str, float]] = []
for name, value in input_data:
processed_data.append((name, float(value)))
return processed_data
data: List[float] = [1.0, 2.0, 3.0, 4.0, 5.0]
mean: float = calculate_mean(data)
print(f"Mean: {mean}")
raw_data: List[Tuple[str, int]] = [("Alice", 25), ("Bob", 30), ("Charlie", 35)]
processed_data: List[Tuple[str, float]] = preprocess_data(raw_data)
print(f"Processed Data: {processed_data}")
# Example of a type error (will be caught by MyPy)
# incorrect_data: List[str] = [1, 2, 3] # MyPy will flag this
ãã®äŸã§ã¯ãåãã³ãã䜿çšããŠé¢æ°åŒæ°ãšæ»ãå€ã®åãæå®ããŠããŸããMyPyã¯ãã³ãŒãããããã®åå¶çŽã«æºæ ããŠããããšãæ€èšŒã§ããŸãã`incorrect_data`ã®è¡ã®ã³ã¡ã³ããå€ããšãMyPyã¯æååã®ãªã¹ããæåŸ ããŠããã«ããããããæŽæ°ã®ãªã¹ããåãåããããåãšã©ãŒãå ±åããŸãã
2. Pydanticã䜿çšããããŒã¿æ€èšŒãšå匷å¶
Pydanticã¯ãPythonã®åã¢ãããŒã·ã§ã³ã䜿çšããŠããŒã¿æ€èšŒãšèšå®ç®¡çãæäŸããPythonã©ã€ãã©ãªã§ããåã¢ãããŒã·ã§ã³ä»ãã®ããŒã¿ã¢ãã«ãå®çŸ©ã§ããPydanticã¯ãããã®ã¢ãã«ã«å¯ŸããŠå ¥åããŒã¿ãèªåçã«æ€èšŒããŸããããã«ãããMLãã€ãã©ã€ã³ã«å ¥ãããŒã¿ãæåŸ ãããåãšåœ¢åŒã§ããããšãä¿èšŒããã®ã«åœ¹ç«ã¡ãŸãã
äŸ:
from typing import List, Optional
from pydantic import BaseModel, validator
class User(BaseModel):
id: int
name: str
signup_ts: Optional[float] = None
friends: List[int] = []
@validator('name')
def name_must_contain_space(cls, v: str) -> str:
if ' ' not in v:
raise ValueError('must contain a space')
return v.title()
user_data = {"id": 1, "name": "john doe", "signup_ts": 1600000000, "friends": [2, 3, 4]}
user = User(**user_data)
print(f"User ID: {user.id}")
print(f"User Name: {user.name}")
# Example of invalid data (will raise a ValidationError)
# invalid_user_data = {"id": "1", "name": "johndoe"}
# user = User(**invalid_user_data) # Raises ValidationError
ãã®äŸã§ã¯ãPydanticã®`BaseModel`ã䜿çšããŠ`User`ã¢ãã«ãå®çŸ©ããŠããŸãããã®ã¢ãã«ã¯ã`id`ã`name`ã`signup_ts`ãããã³`friends`ãã£ãŒã«ãã®åãæå®ããŸããPydanticã¯ããã®ã¢ãã«ã«å¯ŸããŠå ¥åããŒã¿ãèªåçã«æ€èšŒããããŒã¿ãæå®ãããåãå¶çŽã«æºæ ããŠããªãå Žåã«`ValidationError`ãçºçãããŸãã`@validator`ãã³ã¬ãŒã¿ã¯ãååãã¹ããŒã¹ãå«ãããšãä¿èšŒãããªã©ã®ç¹å®ã®ã«ãŒã«ã匷å¶ããããã®ã«ã¹ã¿ã æ€èšŒããžãã¯ã远å ããæ¹æ³ã瀺ããŠããŸãã
3. 颿°åããã°ã©ãã³ã°ãšäžå€ããŒã¿æ§é ã®äœ¿çš
äžå€æ§ãçŽç²é¢æ°ãªã©ã®é¢æ°åããã°ã©ãã³ã°ã®ååããåå®å šæ§ã«è²¢ç®ã§ããŸããäžå€ããŒã¿æ§é ã¯ãããŒã¿ãäœæåŸã«å€æŽã§ããªãããšãä¿èšŒããäºæããªãå¯äœçšãããŒã¿ç Žæãé²ãããšãã§ããŸããçŽç²é¢æ°ã¯ãåãå ¥åã«å¯ŸããŠåžžã«åãåºåãè¿ããå¯äœçšããªã颿°ã§ãããæšè«ããã¹ãã容æã«ãªããŸããScalaãHaskellã®ãããªèšèªã¯ããã®ãã©ãã€ã ããã€ãã£ãã«å¥šå±ããŠããŸãã
äŸ (Pythonã§ã®æŠå¿µçãªèª¬æ):
from typing import Tuple
# Mimicking immutable data structures using tuples
def process_data(data: Tuple[int, str]) -> Tuple[int, str]:
"""A pure function that processes data without modifying it."""
id, name = data
processed_name = name.upper()
return (id, processed_name)
original_data: Tuple[int, str] = (1, "alice")
processed_data: Tuple[int, str] = process_data(original_data)
print(f"Original Data: {original_data}")
print(f"Processed Data: {processed_data}")
# original_data remains unchanged, demonstrating immutability
Pythonã«ã¯äžéšã®é¢æ°åèšèªã®ãããªçµã¿èŸŒã¿ã®äžå€ããŒã¿æ§é ã¯ãããŸããããã¿ãã«ã䜿çšããŠãã®åäœãã·ãã¥ã¬ãŒãã§ããŸãã`process_data`颿°ã¯çŽç²é¢æ°ã§ãããªããªããå ¥åããŒã¿ã倿Žãããåžžã«åãå ¥åã«å¯ŸããŠåãåºåãè¿ãããã§ãã`attrs`ã`dataclasses`ïŒ`frozen=True`ä»ãïŒã®ãããªã©ã€ãã©ãªã¯ãPythonã§äžå€ããŒã¿ã¯ã©ã¹ãäœæããããå ç¢ãªæ¹æ³ãæäŸããŸãã
4. 匷åãªåä»ããæã€ãã¡ã€ã³åºæèšèª (DSLs)
è€éãªMLãã€ãã©ã€ã³ã®å Žåã匷åãªåä»ããšæ€èšŒã«ãŒã«ã匷å¶ãããã¡ã€ã³åºæèšèªïŒDSLïŒãå®çŸ©ããããšãæ€èšããŠãã ãããDSLã¯ãç¹å®ã®ã¿ã¹ã¯ããã¡ã€ã³ã®ããã«èšèšãããå°éçãªããã°ã©ãã³ã°èšèªã§ããMLãã€ãã©ã€ã³ã®ããã«DSLãå®çŸ©ããããšã§ãããåå®å šã§ä¿å®ããããã·ã¹ãã ãäœæã§ããŸããAirflowãKedroã®ãããªããŒã«ã¯ãMLãã€ãã©ã€ã³ãå®çŸ©ããã³ç®¡çããããã®DSLãšèŠãªãããšãã§ããŸãã
æŠå¿µçãªäŸ:
æç€ºçãªå ¥åãšåºåã®åãæã€ãã€ãã©ã€ã³ã¹ããããå®çŸ©ããDSLãæ³åããŠãã ãã:
# Simplified DSL example (not executable Python)
define_step(name="load_data", output_type=DataFrame)
load_data = LoadData(source="database", query="SELECT * FROM users")
define_step(name="preprocess_data", input_type=DataFrame, output_type=DataFrame)
preprocess_data = PreprocessData(method="standardize")
define_step(name="train_model", input_type=DataFrame, output_type=Model)
train_model = TrainModel(algorithm="logistic_regression")
pipeline = Pipeline([load_data, preprocess_data, train_model])
pipeline.run()
ãã®æŠå¿µçãªDSLã¯ãã¹ãããéã®åãã§ãã¯ã匷å¶ããããã¹ãããã®åºååãæ¬¡ã®ã¹ãããã®å ¥ååãšäžèŽããããšãä¿èšŒããŸããæ¬æ ŒçãªDSLã®æ§ç¯ã¯ããªãã®åŽåãèŠããŸãããå€§èŠæš¡ã§è€éãªMLãããžã§ã¯ãã§ã¯ãã®äŸ¡å€ããããŸãã
5. TypeScriptã®ãããªåå®å šãªèšèªã®æŽ»çš (WebããŒã¹MLã®å Žå)
MLãã€ãã©ã€ã³ã«WebããŒã¹ã®ã¢ããªã±ãŒã·ã§ã³ããã©ãŠã¶ã§ã®ããŒã¿åŠçãå«ãŸããå ŽåãTypeScriptã®äœ¿çšãæ€èšããŠãã ãããTypeScriptã¯JavaScriptã®ã¹ãŒããŒã»ããã§ãããéçåä»ãã远å ããŸããããã«ãããããå ç¢ã§ä¿å®ããããJavaScriptã³ãŒããäœæã§ãããã©ãŠã¶ãNode.jsç°å¢ã§å®è¡ãããè€éãªMLã¢ããªã±ãŒã·ã§ã³ã«ãšã£ãŠç¹ã«åœ¹ç«ã¡ãŸããTensorFlow.jsã®ãããªã©ã€ãã©ãªã¯TypeScriptãšç°¡åã«äºææ§ããããŸãã
äŸ:
interface DataPoint {
x: number;
y: number;
}
function calculateDistance(p1: DataPoint, p2: DataPoint): number {
const dx = p1.x - p2.x;
const dy = p1.y - p2.y;
return Math.sqrt(dx * dx + dy * dy);
}
const point1: DataPoint = { x: 10, y: 20 };
const point2: DataPoint = { x: 30, y: 40 };
const distance: number = calculateDistance(point1, point2);
console.log(`Distance: ${distance}`);
// Example of a type error (will be caught by the TypeScript compiler)
// const invalidPoint: DataPoint = { x: "hello", y: 20 }; // TypeScript will flag this
ãã®äŸã¯ãTypeScriptãããŒã¿æ§é ã®ã€ã³ã¿ãŒãã§ãŒã¹ãå®çŸ©ãã颿°ã§åãã§ãã¯ã匷å¶ããããã«ã©ã®ããã«äœ¿çšã§ãããã瀺ããŠããŸããTypeScriptã³ã³ãã€ã©ã¯ãã³ãŒããå®è¡ãããåã«åãšã©ãŒãææããå®è¡æãšã©ãŒãé²ããŸãã
åå®å šãªMLãã€ãã©ã€ã³ã䜿çšããå©ç¹
MLãã€ãã©ã€ã³ã§åå®å šãªãã©ã¯ãã£ã¹ãæ¡çšãããšãæ°å€ãã®å©ç¹ãåŸãããŸãã
- ãšã©ãŒçã®åæž: éçåä»ãã¯ãéçºããã»ã¹ã®æ©ã段éã§ãšã©ãŒãææããã®ã«åœ¹ç«ã¡ãæ¬çªç°å¢ã«å°éãããã°ã®æ°ãæžãããŸãã
- ã³ãŒãå質ã®åäž: åã¢ãããŒã·ã§ã³ãšããŒã¿æ€èšŒã¯ãã³ãŒãã®å¯èªæ§ãšä¿å®æ§ãåäžããããã€ãã©ã€ã³ãçè§£ãã倿Žããããšã容æã«ããŸãã
- éçºé床ã®åäž: åæèšå®ã«ãããã«æéããããå ŽåããããŸããããšã©ãŒãæ©æã«ææããã³ãŒãã®ä¿å®æ§ãåäžãããããšã§ç¯çŽãããæéã¯ãå€ãã®å Žåãåæã³ã¹ããäžåããŸãã
- ã³ã©ãã¬ãŒã·ã§ã³ã®åŒ·å: æç¢ºãªåå®çŸ©ã¯ãããŒã¿ãµã€ãšã³ãã£ã¹ããããŒã¿ãšã³ãžãã¢ããœãããŠã§ã¢ãšã³ãžãã¢éã®ã³ã©ãã¬ãŒã·ã§ã³ãä¿é²ããŸãã
- ã³ã³ãã©ã€ã¢ã³ã¹ãšç£æ»æ§ã®åäž: åå®å šæ§ã¯ãMLãã€ãã©ã€ã³ãèŠå¶èŠä»¶ãšæ¥çã®ãã¹ããã©ã¯ãã£ã¹ã«æºæ ããŠããããšãä¿èšŒããã®ã«åœ¹ç«ã¡ãŸããããã¯ãéèããã«ã¹ã±ã¢ãªã©ã®èŠå¶æ¥çã§ã¯ç¹ã«éèŠã§ãã
- ãªãã¡ã¯ã¿ãªã³ã°ã®ç°¡çŽ å: åå®å šæ§ã«ãããåãã§ãã«ãŒã倿Žãäºæããªããšã©ãŒãåŒãèµ·ãããªãããšãä¿èšŒããã®ã«åœ¹ç«ã€ãããã³ãŒãã®ãªãã¡ã¯ã¿ãªã³ã°ã容æã«ãªããŸãã
å®äžçã®äŸãšã±ãŒã¹ã¹ã¿ãã£
ããã€ãã®çµç¹ãåå®å šãªMLãã€ãã©ã€ã³ãæåè£ã«å®è£ ããŠããŸããããã€ãã®äŸã以äžã«ç€ºããŸãã
- Netflix: Netflixã¯ãã¬ã³ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ã®ä¿¡é Œæ§ãšä¿å®æ§ã確ä¿ããããã«ãããŒã¿ãµã€ãšã³ã¹ããã³ãšã³ãžãã¢ãªã³ã°ã¯ãŒã¯ãããŒã§åãã³ããšéçè§£æããŒã«ãåºç¯ã«äœ¿çšããŠããŸãã
- Google: Googleã¯ãMLãã€ãã©ã€ã³ã«ãããåå®å šæ§ããµããŒãããå éšããŒã«ãšãã¬ãŒã ã¯ãŒã¯ãéçºããŠããŸãããŸããåãã³ããšéçè§£ææ©èœãåŸã ã«çµã¿èŸŒãã§ããTensorFlowã®ãããªãªãŒãã³ãœãŒã¹ãããžã§ã¯ãã«ãè²¢ç®ããŠããŸãã
- Airbnb: Airbnbã¯ãMLãã€ãã©ã€ã³ã®ããŒã¿æ€èšŒãšèšå®ç®¡çã«Pydanticã䜿çšããŠããŸããããã«ãããã¢ãã«ã«å ¥ãããŒã¿ãæåŸ ãããåãšåœ¢åŒã§ããããšãä¿èšŒããã®ã«åœ¹ç«ã¡ãŸãã
MLãã€ãã©ã€ã³ã§åå®å šæ§ãå®è£ ããããã®ãã¹ããã©ã¯ãã£ã¹
MLãã€ãã©ã€ã³ã§åå®å šæ§ãå®è£ ããããã®ãã¹ããã©ã¯ãã£ã¹ã以äžã«ç€ºããŸãã
- å°ããå§ãã: ã³ãŒãããŒã¹ã®å°ããªéšåã«åãã³ãã远å ããããšããå§ããåŸã ã«é©çšç¯å²ãæ¡å€§ããŸãã
- åãã§ãã«ãŒã䜿çšãã: MyPyã®ãããªåãã§ãã«ãŒã䜿çšããŠãã³ãŒããåå¶çŽã«æºæ ããŠããããšãæ€èšŒããŸãã
- ããŒã¿ãæ€èšŒãã: Pydanticã®ãããªããŒã¿æ€èšŒã©ã€ãã©ãªã䜿çšããŠããã€ãã©ã€ã³ã«å ¥ãããŒã¿ãæåŸ ãããåãšåœ¢åŒã§ããããšãä¿èšŒããŸãã
- 颿°åããã°ã©ãã³ã°ãåãå ¥ãã: äžå€æ§ãçŽç²é¢æ°ãªã©ã®é¢æ°åããã°ã©ãã³ã°ã®ååãæ¡çšããã³ãŒãã®ä¿¡é Œæ§ãšä¿å®æ§ãåäžãããŸãã
- åäœãã¹ããäœæãã: ã³ãŒããæåŸ éãã«åäœããåãšã©ãŒãæ©æã«ææãããããšãæ€èšŒããããã«åäœãã¹ããäœæããŸãã
- DSLãæ€èšãã: è€éãªMLãã€ãã©ã€ã³ã®å Žåã匷åãªåä»ããšæ€èšŒã«ãŒã«ã匷å¶ãããã¡ã€ã³åºæèšèªïŒDSLïŒã®å®çŸ©ãæ€èšããŸãã
- CI/CDãžã®åãã§ãã¯ã®çµ±å: ç¶ç¶çã€ã³ãã°ã¬ãŒã·ã§ã³ããã³ç¶ç¶çãããã€ã¡ã³ãïŒCI/CDïŒãã€ãã©ã€ã³ã«åãã§ãã¯ãçµã¿èŸŒã¿ãåãšã©ãŒãæ¬çªç°å¢ã«å°éããåã«ææãããããšãä¿èšŒããŸãã
çµè«
åå®å šãªMLãã€ãã©ã€ã³ã¯ãå ç¢ã§ä¿¡é Œæ§ãé«ããä¿å®å¯èœãªAIã·ã¹ãã ãæ§ç¯ããããã«äžå¯æ¬ ã§ããéçåä»ããããŒã¿æ€èšŒãããã³é¢æ°åããã°ã©ãã³ã°ã®ååãåãå ¥ããããšã§ããšã©ãŒçãæžãããã³ãŒãå質ãåäžãããã³ã©ãã¬ãŒã·ã§ã³ã匷åã§ããŸããåå®å šæ§ã®å®è£ ã«ã¯åææè³ãå¿ èŠãããããŸããããé·æçãªã¡ãªããã¯ãã®ã³ã¹ããã¯ããã«äžåããŸããAIã®åéãé²åãç¶ããã«ã€ããŠãåå®å šæ§ã¯ãä¿¡é Œæ§ãé«ãã¹ã±ãŒã©ãã«ãªMLãœãªã¥ãŒã·ã§ã³ãæ§ç¯ãããçµç¹ã«ãšã£ãŠãŸããŸãéèŠãªèæ ®äºé ãšãªãã§ããããåãã³ããPydanticããã®ä»ã®ææ³ã詊ããŠãMLã¯ãŒã¯ãããŒã«åå®å šæ§ãåŸã ã«å°å ¥ãå§ããŠãã ãããä¿¡é Œæ§ãšä¿å®æ§ã®é¢ã§ã®èŠè¿ãã¯å€§ããã§ãããã
ãããªããªãœãŒã¹
- PEP 484 -- åãã³ã: https://www.python.org/dev/peps/pep-0484/
- MyPy: http://mypy-lang.org/
- Pydantic: https://pydantic-docs.helpmanual.io/
- TensorFlow.js: https://www.tensorflow.org/js